LIN28A Expression Reduces Sickling of Cultured Human Erythrocytes

نویسندگان

  • Jaira F. de Vasconcellos
  • Ross M. Fasano
  • Y. Terry Lee
  • Megha Kaushal
  • Colleen Byrnes
  • Emily R. Meier
  • Molly Anderson
  • Antoinette Rabel
  • Raul Braylan
  • David F. Stroncek
  • Jeffery L. Miller
چکیده

Induction of fetal hemoglobin (HbF) has therapeutic importance for patients with sickle cell disease (SCD) and the beta-thalassemias. It was recently reported that increased expression of LIN28 proteins or decreased expression of its target let-7 miRNAs enhances HbF levels in cultured primary human erythroblasts from adult healthy donors. Here LIN28A effects were studied further using erythrocytes cultured from peripheral blood progenitor cells of pediatric subjects with SCD. Transgenic expression of LIN28A was accomplished by lentiviral transduction in CD34(+) sickle cells cultivated ex vivo in serum-free medium. LIN28A over-expression (LIN28A-OE) increased HbF, reduced beta (sickle)-globin, and strongly suppressed all members of the let-7 family of miRNAs. LIN28A-OE did not affect erythroblast differentiation or prevent enucleation, but it significantly reduced or ameliorated the sickling morphologies of the enucleated erythrocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erythroid-Specific Expression of LIN28A Is Sufficient for Robust Gamma-Globin Gene and Protein Expression in Adult Erythroblasts

Increasing fetal hemoglobin (HbF) levels in adult humans remains an active area in hematologic research. Here we explored erythroid-specific LIN28A expression for its effect in regulating gamma-globin gene expression and HbF levels in cultured adult erythroblasts. For this purpose, lentiviral transduction vectors were produced with LIN28A expression driven by erythroid-specific gene promoter re...

متن کامل

Induction of the RNA regulator LIN28A is required for the growth and pathogenesis of RESTless breast tumors.

The transcription factor RE1 silencing transcription factor (REST) is lost in approximately 20% of breast cancers. Although it is known that these RESTless tumors are highly aggressive and include all tumor subtypes, the underlying tumorigenic mechanisms remain unknown. In this study, we show that loss of REST results in upregulation of LIN28A, a known promoter of tumor development, in breast c...

متن کامل

Molecular and Cellular Pathobiology Induction of the RNA Regulator LIN28A Is Required for the Growth and Pathogenesis of RESTless Breast Tumors

The transcription factor RE1 silencing transcription factor (REST) is lost in approximately 20% of breast cancers. Although it is known that these RESTless tumors are highly aggressive and include all tumor subtypes, the underlying tumorigenic mechanisms remain unknown. In this study, we show that loss of REST results in upregulation of LIN28A, a known promoter of tumor development, in breast c...

متن کامل

LIN28A facilitates the transformation of human neural stem cells and promotes glioblastoma tumorigenesis through a pro-invasive genetic program

The cellular reprogramming factor LIN28A promotes tumorigenicity in cancers arising outside the central nervous system, but its role in brain tumors is unknown. We detected LIN28A protein in a subset of human gliomas observed higher expression in glioblastoma (GBM) than in lower grade tumors. Knockdown of LIN28A using lentiviral shRNA in GBM cell lines inhibited their invasion, growth and clono...

متن کامل

Lin28a regulates neuronal differentiation and controls miR-9 production

microRNAs shape the identity and function of cells by regulating gene expression. It is known that brain-specific miR-9 is controlled transcriptionally; however, it is unknown whether post-transcriptional processes contribute to establishing its levels. Here we show that miR-9 is regulated transcriptionally and post-transcriptionally during neuronal differentiation of the embryonic carcinoma ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014